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Abstract
Starting from the Rodrigues formula we present a general construction of
raising and lowering operators for orthogonal polynomials of continuous and
discrete variables on a uniform lattice. In order to have these operators
mutually adjoint we introduce orthonormal functions with respect to the scalar
product of unit weight. Using the Infeld–Hull factorization method, we
generate from the raising and lowering operators the second-order self-adjoint
differential/difference operator of hypergeometric type.

PACS numbers: 0210N, 0220S, 0270B, 0365G

1. Introduction

The factorization method has become a very powerful tool to solve second-order differential
equations and in application to physical models with orthonormal basis, generated by creation
and annihilation operators. A classical paper by Infeld and Hull [1] defined the method
and applied it to a large class of second-order Hamiltonians that generalizes the well known
description of the non-relativistic oscillator by means of creation and annihilation operators.
Miller [2] enlarged this method to difference equations and made a connection to the orthogonal
polynomial of a discrete variable. An analysis of the factorization types led Miller to the idea
that this method is a particular case of the representation theory of Lie algebras.

The two volumes of Nikiforov and collaborators [3, 4] about classical orthogonal
polynomials of continuous and discrete variables opened the way to a more rigorous and
systematic approach to the factorization method. In fact Atakishiev and colaborators [5–8]
explored the application of Kravchuk, Meixner and Charlier polynomials to the eigenvalue
problem of some dynamical systems where the energy eigenvalues are equally spaced. This
particular situation makes it possible to determine the generators of the dynamical symmetry
group. Also Smirnov [9] has used the properties of difference equations of hypergeometric type
given in [3] to construct raising and lowering operators that generate orthonormal functions
corresponding to Hamiltonians of different levels.

Bangerezako and Magnus have developed the method of the factorization of difference
operators of hypergeometric type [10–12]. They proposed two different approaches for this
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factorization. (1) For a given operator find raising and lowering operators that generate a
complete set of polynomial eigenfunctions. (2) Generate from a factorization chain an operator
having a complete set of polynomial eigenfunctions.

We have presented two papers [13, 14] related to the construction of the creation and
annihilation operators for the orthogonal polynomials (or functions) of continuous and discrete
variables. The motivation for these papers was the construction of a mathematical model for
quantum systems on discrete spacetime (such as the harmonic oscillator, the hydrogen atom,
the Dirac equation) [15] and to make connection with standard quantum mechanics by the
continuous limit.

In this paper we follow the second approach to the factorization method of Bangerezako
and Magnus explained before. Starting from the raising and lowering operators we generate the
second-order differential/difference equation corresponding to the hypergeometric functions
of continuous and discrete variables. Our procedure is completely general and valid for all
functions of this type.

In section 2 we use the results of Nikiforov et al [3, 4] connecting first-order derivatives
and orthogonal polynomials (as a consequence of Rodrigues’ formula) to construct raising
and lowering operators (the last one with the help of recurrence relations). In general these
operators are not mutually adjoint with respect to the standard scalar product. For this reason,
we introduce in section 3 the orthonormalized functions of hypergeometric type and then the
corresponding raising and lowering operators are always mutually adjoint.

In sections 4 and 5 we repeat the same systematic procedure, derived from Rodrigues’
formula, to calculate the raising and lowering operators for orthogonal polynomials and
functions of discrete variable. It can be proved that these operators are also mutually adjoint.

In section 6 we introduce the factorization method to generate the second-order differential
operator of the Sturm–Liouville type having a complete set of polynomial eigenfunctions. The
factorization of the raising and lowering operators fulfils (up to a factor) the defining equations
of the Infeld–Hull method [1].

In section 7 we apply the same technique to the hypergeometric functions of discrete
variables. As usual all these functions transform in the limit into the corresponding
hypergeometric functions of continuous variables.

It is important to make clear that the raising and lowering operators, introduced in
sections 2–5, are defined with respect to one index only, namely, the degree of the orthogonal
polynomials or the degree of the corresponding orthonormal functions. The same definition
has been used by Atakishiev and colaborators [6–8], by Bangerezako and Magnus [10–12] and
by Infeld et al [1, 2]. Physically this situation corresponds in the case of quantum oscillators
to the creation and annihilation operators with respect to the index that distinguishes different
eigenvectors of the energy operators.

With respect to the factorization techniques in the case of difference equations of section 7
two types of factorization can be considered [12]. Writing a linear difference equation of second
order in the form

H(x)y(x) =
d∑

i=−d

Ai(x)E
i
xy(x)

where Ei
x[f (x)] = f (x + i), d ∈ Z+, i ∈ Z and Ai(x) are some scalar functions in x,

the first type of factorization consists in factorizing exactly the operators H(x) + C, with C

some constant, and the raising and lowering operators satisfying a quasi-periodicity condition
(Spiridinov–Vinet–Zhedanov type) [19]. The second factorization technique consists in
factorizing the operator Ed

x ◦ [H(x) + C] with some raising and lowering operators that are
shape invariant (Infeld–Hull–Miller type) [1, 2]. In section 7 we have used the first type of
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factorization, but in section 6 obviously we have used the Infeld–Hull–Miller technique for
differential equations of hypergeometric type.

2. Raising and lowering operators for orthogonal polynomials of continuous variable

A polynomial of hypergeometric type yn(s) of continuous variable s satisfies two fundamental
equations, from which one derives the raising and lowering operator.

(i) Differential equation.

σ(s)y ′′
n + τ(s)y ′

n(s) + λnyn(s) = 0 (C1)

where σ(s) and τ(s) are polynomials of, at most, second and first degree respectively, and
λn is a constant, related to the above functions

λn = −n

(
τ ′ +

n − 1

2
σ ′′

)
.

The differential equation can be written in the form of an eigenvalue equation of Sturm–
Liouville type:

(σ (s)ρ(s)y ′
n(s))

′ + λnρ(s)yn(s) = 0

where ρ(s) is the weight function, satisfying (σ (s)ρ(s))′ = τ(s)ρ(s).
The solutions of the differential equation are polynomials that satisfy an orthogonality
relation with respect to the scalar product∫ b

a

yn(s)ym(s)ρ(s) ds = d2
nδnm

where dn is a normalization constant.
The differential equation (C1) defines an operator that is self-adjoint with respect to this
scalar product.

(ii) Three-term recurrence relations.

syn(s) = αnyn+1(s) + βnyn(s) + γnyn−1(s) (C2)

where αn, βn, γn are constants.
(iii) Raising operator. From the Rodrigues formula (which is a consequence of the differential

equation (C1)) one derives a relation for the first derivative of polynomials yn(s) in terms
of the polynomials themselves

σy ′
n(s) = λn

nτ ′
n

[
τn(s)yn(s) − Bn

Bn+1
yn+1(s)

]
where

τn(s) = τ(s) + nσ ′(s)

τ ′
n(s) = τ ′ + nσ ′′ = − λ2n+1

2n + 1
.

We can modify the last equation in a more suitable form. From

an = Bn

n−1∏
k=0

(τ ′ + 1
2 (n + k − 1)σ ′′) a0 = B0

we can prove the following identity:

αn = an

an+1
= Bn

Bn+1

τ ′ + n−1
2 σ ′′

(τ ′ + 2n−1
2 σ ′′)(τ ′ + nσ ′′)

= Bn

Bn+1

λn

n

2n

λ2n

2n + 1

λ2n+1
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from which we finally obtain

+
λn

n

τn(s)

τ ′
n

yn(s) − σ(s)y ′
n(s) = λ2n

2n
αnyn+1(s). (C3)

The left-hand side of this equation can be considered the differential operator which, when
applied to yn(s), gives a polynomial of higher degree.

(iv) Lowering operator. Introducing (C2) in (C3) we obtain a differential operator which,
when applied to an orthogonal polynomial of some degree, gives another polynomial of
lower degree:

−λn

n

τn(s)

τ ′
n

+
λ2n

2n
(s − βn) + σ(s)y ′

n(s) = λ2n

2n
γnyn−1(s). (C4)

Formulae (C3) and (C4) can be used to calculate solutions of the diferential equation (C1).
In fact, if we put n = 0 in (C4) we obtain y0(s). Inserting this value in (C3) we obtain by
iteration all the solutions of the differential operator (C1).

The explicit expressions for orthogonal polynomials of a continuous variable are given in
appendix A. The values of ρ(s), σ (s), τ (s), λn, αn, βn, γn, dn are taken from [4].

3. Raising and lowering operators for orthonormal functions of a continuous variable

From the orthogonal polynomials that satisfy a scalar product with respect to the weight ρ(s)
we can construct a new function:

ψn(s) ≡ d−1
n

√
ρ(s)yn(s)

and obtain orthogonal functions of unit norm. Solving the last expression for yn(s) and
substituting in (C1)–(C4) and using the properties of σ(s) and τ(s) we obtain the following
expressions for the normalized orthogonal functions.

(i) Differential equation.

σ(s)ψ ′′
n (s) + σ ′(s)ψ ′

n(s) −
[

1

4

(τ (s) − σ ′(s))2

σ(s)
+

1

2
(τ ′ − σ ′′)

]
ψn(s) + λnψn(s) = 0

(NC1)

which corresponds to a self-adjoint operator of Sturm–Liouville type.
(ii) Recurrence relation.

λ2n

2n

dn+1

dn
αnψn+1(s) +

λ2n

2n

dn−1

dn
γnψn(s) +

λ2n

2n
(βn − s)ψn(s) = 0. (NC2)

(iii) Raising and lowering operators.

L+(s, n)ψn(s) =
[
λn

n

τn(s)

τ ′
n

+
1

2
(τ (s) − σ ′(s))

]
ψn(s) − σ(s)ψ ′

n(s)

= λ2n

2n
αn

dn+1

dn
ψn+1(s) (NC3)

L−(s, n)ψn(s) =
[
−λn

n

τn(s)

τ ′
n

+
λ2n

2n
(s − βn) − 1

2
(τ (s) − σ ′(s))

]
ψn(s)

+σ(s)ψ ′
n(s) = λ2n

2n
γn

dn−1

dn
ψn−1(s). (NC4)
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Putting n = 0 in (NC4) we obtain ψ0(s), and inserting this value in (NC3) we obtain by
iteration all the orthonormal functions of hypergeometric type.

The explicit expressions for these functions are given in appendix A.
We want to make two observations. First, the operator corresponding to (NC1) is a self-

adjoint operator of Sturm–Liouville type as can be easily checked. Secondly, the raising and
lowering operators (NC3) and (NC4) are mutually adjoint in the case of Laguerre and Hermite
functions. For the Jacobi and Legendre functions we have to multiply both operators by 2n/λ2n.
In fact, we have∫ b

a

ψn+1(s)

[
2n

λ2n
L+(s, n)ψn(s)

]
ds = αn

dn+1

dn∫ b

a

[
2n + 2

λ2n+2
L−(s, n + 1)ψn+1(s)

]
ψn(s) ds = γn+1

dn

dn+1
.

Both integrals are equal because γn+1 = αn
d2
n+1
d2
n

.
(In the case of Hermite and Laguerre functions λm/m is independent of m, for any m.)

4. Raising and lowering operators for orthogonal polynomials of discrete variable

A polynomial of hypergeometric type Pn(x) of discrete variable x satisfies two fundamental
relations from which one derives raising and lowering operators.

(i) Difference equation.

σ(x)"∇Pn(x) + τ(x)"Pn(x) + λnPn(x) = 0 (D1)

where σ(x) and τ(x) are polynomials of, at most, second and first degree, respectively.
The forward (backward) difference operators are

"f (x) = f (x + 1) − f (x) ∇f (x) = f (x) − f (x − 1).

This difference equation can be written in the form of an eigenvalue equation of Sturm–
Liouville type

"[σ(x)ρ(x)∇Pn(x)] + λnρ(x)Pn(x) = 0

where ρ(x) is a weight function satisfying

"[σ(x)ρ(x)] = τ(x)ρ(x)

and λn is the eigenvalue corresponding to the eigenfunction P(x):

λn = −n"τ(x) − n(n − 1)

2
"2σ(x) = −n

(
τ ′ +

n − 1

2
σ ′′

)
.

The solutions of the difference equation are polynomials that satisfy an orthogonality
relation with respect to the scalar product

b−1∑
x=a

Pn(x)Pm(x)ρ(x) = d2
nδnm

where δmn is the Kronecker symbol and dn some normalization constant. The difference
equation (D1) defines an operator that is self-adjoint with respect to this scalar product.

(ii) Three-term recurrence relations.

xPn(x) = αnPn+1(x) + βnPn(x) + γnPn+1(x) (D2)

where αn, βn, γn are some constants.
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(iii) Raising operator.
From the Rodrigues formula, one derives a relation for the first difference operator of
polynomials Pn(x) in terms of the polynomials themselves.

σ(x)∇Pn(x) = λn

nτ ′
n

[
τn(x)Pn(x) − Bn

Bn+1
Pn+1(x)

]
where

τn(x) = τ(x + n) + σ(x + n) − σ(x)

"τn(x) = "τ(x) + n"2σ(x)

or τ ′
n = τ ′ + nσ ′′(x) = − λ2n+1

2n + 1
because σ(x) and τ(x) are polynomials of at most second and first degree respectively.
We can modify the last equation to a more suitable form, as we did in the continuous case.
From the definition

an = Bn

n−1∏
k=0

(τ ′ + 1
2 (n + k − 1)σ ′′) a0 = B0

we have the following identity:

αn = an

an+1
= − 2n

λ2n

(2n + 1)

λ2n+1

n

λn

Bn

Bn+1

from which we obtain a more simplified version

σ(x)∇Pn(x) = λn

n

τn(x)

τ ′
n

Pn(x) − λ2n

2n
Pn+1(x). (D3)

This equation defines the raising operator in terms of the backward difference.
(iv) Lowering operator.

From the expression for the raising operator we can derive another lowering operator
in terms of the forward operator. We substitute the difference operator ∇ in (D3) for
its equivalent ∇ = " − ∇", and then the difference equation (D1) and the three-term
recurrence relations (D2), with the result

(σ (x) + τ(x))"Pn(x) =
[
−λn

n

2n + 1

x2n+1
τ(x) − λn − λ2n

2n
(x − βn)

]
Pn(x)

+
λ2n

2n
γnPn−1(x). (D4)

As in the continuous case from (D4) putting n = 0 we obtain P0(x) and inserting this
value in (D3) we obtain by iteration all the polynomials Pn(x) satisfying (D1).

The explicit expressions for the orthogonal polynomials Pn(x) are given in appendix B.
The values of ρ(x), σ (x), τ (x), λn, αn, βn, γn, dn are taken from [4].

5. Raising and lowering operators for orthonormal functions of discrete variable

In the last section we have a set of polynomials that are orthogonal with respect to the weight
function ρ(x). From these polynomials we construct some functions that are orthogonal with
respect to the unit weight, ρ(x) = 1, and at the same time are normalized:

φn(x) = d−1
n

√
ρ(x)Pn(x).

Introducing this expression in (D1)–(D4) and using the properties of function σ(x), τ(x)
and ρ(x), we obtain the following.
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(i) Difference equation.√
(σ (x) + τ(x))σ (x + 1)φn(x + 1) +

√
(σ (x − 1) + τ(x − 1))σ (x)φn(x − 1)

−(2σ(x) + τ(x))φn(x) + λnφn(x) = 0. (ND1)

(ii) Three-term recursion relation.

λ2n

2n
αn

dn+1

dn
φn+1(x) +

λ2n

2n
γn

dn−1

dn
φn−1(x) +

λ2n

2n
(βn − x)φn(x) = 0.

(ND2)

(iii) Raising operator.

L+(x, n) ≡
[
λn

n

τn(x)

τ ′
n

− σ(x)

]
φn(x) +

√
(σ (x − 1) + τ(x − 1))σ (x)φn(x − 1)

= λ2n

2n
αn

dn+1

dn
φn+1(x). (ND3)

(iv) Lowering operator.

L−(x, n) ≡
[
−λn

n

τn(x)

τ ′
n

+ λn +
λ2n

2n
(x − βn) − σ(x) − τ(x)

]
φn(x)

+
√
(σ (x) + τ(x))σ (x + 1)φn(x + 1) = λ2n

2n
γn

dn−1

dn
φn−1(x). (ND4)

From the last two expressions we obtain all the solutions of the difference equation (ND1).
Putting n = 0 in (ND4) we obtain φ0(x), and inserting this value in (DC3) we obtain, by
iteration, all the normalized functions φn(x).

The explicit calculations for all the orthonormal functions of hypergeometric type are
given in appendix B.

As in section 3, we make two observations. Firstly, the raising and lowering
operators (ND3) and (ND4) are mutually adjoint in the case of Krauvchuk, Meixner and
Charlier functions. For the Hahn and Chebyshev functions we have to divide both by λ2n/2n;
therefore, they become mutually adjoint, namely,
b−1∑
x=a

φn+1(x)

[
2n

λ2n
L+(x, n)φn(x)

]
=

b−1∑
x=a

[
2n + 2

λ2n+2
L−(x, n + 1)φn+1(x)

]
φn(x) = αn

dn+1

dn
.

Secondly, the operator corresponding to the eigenvalue λn in (ND1) is self-adjoint. In
order to prove this, it is enough to show
b−1∑
x=a

φl(x)
{√

(σ (x) + τ(x))σ (x + 1)φn(x + 1) +
√
(σ (x − 1) + τ(x − 1))σ (x)φn(x − 1)

}

=
b−1∑
x=a

φn(x)

{√
(σ (x − 1) + τ(x − 1))σ (x)φl(x − 1)

+
√
(σ (x) + τ(x))σ (x + 1)φl(x + 1)

}
.

From the orthogonality conditions σ(a) = σ(b) = 0, we can write
b−1∑
x=a

φn(x)
√
(σ (x − 1) + τ(x − 1))σ (x)φl(x − 1)

=
b−2∑

x ′=a−1

φn(x
′ + 1)

√
(σ (x ′) + τ(x ′))σ (x ′ + 1)φl(x

′)
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=
b−1∑
x=a

φn(x + 1)
√
(σ (x) + τ(x))σ (x + 1)φl(x).

Similarly

b−1∑
x=a

φn(x)
√
(σ (x) + τ(x))σ (x + 1)φl(x + 1)

=
b−1∑
x=a

φn(x − 1)
√
(σ (x − 1) + τ(x − 1))σ (x)φl(x).

6. Factorization for differential equation of hypergeometric type

The raising and lowering operators of sections 2 and 4 will help us to factorize the second-order
differential equation of hypergeometric type into the product of two first-order operators in
agreement with the general method of Infeld and Hull [1].

From (NC1) we define the operator

H(s, n) ≡ σ(s)
d2

ds2
+ σ ′(s)

d

ds
− 1

4

(σ (s) − σ ′(s))2

σ(s)
− 1

2
(τ ′ − σ ′′) + λn

that satisfies H(s, n)ψn(s) = 0.
We write the raising and lowering operators, (NC3) and (NC4) respectively, in the

following way:

L+(s, n) ≡ f (s, n) − σ(s)
d

ds

L−(s, n) ≡ g(s, n) + σ(s)
d

ds
where

f (s, n) = λn

n

τn(s)

τ ′
n

+
1

2
(τ (s) − σ ′(s))

g(s, n) = −λn

n

τn(s)

τ ′
n

+
λ2n

2n
(s − βn) − 1

2
(τ (s) − σ ′(s))

satisfying

f (s, n − 1) = g(s, n) or f (s, n) = g(s, n + 1)

which can be proved by Taylor expansion.
Now we calculate

L−(s, n + 1)L+(s, n) = g(s, n + 1)f (s, n) + σ(s){f (s, n) − g(s, n + 1)} d

ds

+σ(s)

{
f ′(s, n) − σ ′(s)

d

ds
− σ(s)

d2

ds2

}
.

The second term of the right-hand side becomes zero. Substituting the values for f (s, n),
g(s, n) and H(s, n) we obtain

L−(s, n + 1)L+(s, n) =
[(

λn

n

)2 (
τn(s)

τ ′
n

)2

+
λn

n

τn(s)

τ ′
n

(τ (s) − σ ′(s)) + (n + 1)
λn

n
σ(s)

]

−σ(s)H(s, n).
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It can be proved that the expression in squared brackets is independent of s, say µ(n).
Applying the last equality to the orthonormal functions ψn(s) and taking into account (NC3)
and (NC4) we obtain

µ(n) = λ2n

2n

λ2n+2

2n + 2
αnγn+1.

With the same technique we calculate

L+(s, n − 1)L−(s, n) = f (s, n − 1)g(s, n) + σ(s){f (s, n − 1) − g(s, n)} d

ds

−σ(s)

{
g′(s, n) + σ ′(s)

d

ds
+ σ(s)

d2

ds2

}
.

From the properties between f (s, n) and g(s, n), the second term in the right-hand side
becomes zero. Substituting the values of these functions and H(s, n) we finally obtain

L+(s, n − 1)L−(s, n) =
[(

λn−1

n − 1

)2(
τn−1(s)

τ ′
n−1

)2

+
λn−1

n − 1

τn−1(s)

τ ′
n−1

(τ (s) − σ ′(s))

+n
λn−1

n − 1
σ(s)

]
− σ(s)H(s, n).

It can be proved that the expression in squared brackets is independent of s, say ν(n).
Applying the last equality to the orthonormal functions ψn(s) and taking into account (NC3)
and (NC4) we obtain

ν(n) = λ2n−2

2n − 2

λ2n

2n
αn−1γn.

Obviously, ν(n + 1) = µ(n). These constants are given explicitly in appendix A.
Finally we have the desired relation equivalent to the Infeld–Hull–Miller factorization

method:

L−(s, n + 1)L+(s, n) = µ(n) − σ(s)H(s, n) (NC5)

L+(s, n)L−(s, n + 1) = µ(n) − σ(s)H(s, n + 1). (NC6)

If we require L+(s, n) and L−(s, n) to be mutually adjoint we have to divide both sides
of (NC5) and (NC6) by

λ2n+2

2n + 2

λ2n

2n
.

7. Factorization of difference equation of hypergeometric type

For the case of orthonormal hypergeometric functions of a discrete variable, we define
from (ND1) the operator

H(x, n) ≡
√
(σ (x) + τ(x))σ (x + 1)E+ +

√
(σ (x − 1) + τ(x − 1))σ (x)E−

−(2σ(x) + τ(x)) + λn

where E+f (x) = f (x + 1), E−f (x) = f (x − 1) and the orthonormal functions satisfy

H(x, n)φn(x) = 0.

As before we write the raising and lowering operators in the following way:

L+(x, n) = u(x, n) +
√
(σ (x − 1) + τ(x − 1))σ (x)E−

L−(x, n) = v(x, n) +
√
(σ (x) + τ(x))σ (x + 1)E+
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where

u(x, n) = λn

n

τn(x)

τ ′
n

− σ(x)

v(x, n) = −λn

n

τn(x)

τ ′
n

+ λn +
λ2n

2n
(x − βn) − σ(x) − τ(x).

Both expressions satisfy

u(x + 1, n) = v(x, n + 1) or

u(x + 1, n − 1) = v(x, n)

that can be proved by Taylor expansion.
Now we calculate

L−(x, n + 1)L+(x, n) = v(x, n + 1)u(x, n) + (σ (x) + τ(x))σ (x + 1) + u(x + 1, n)

×
{√

(σ (x) + τ(x))σ (x + 1)E+ +
√
(σ (x − 1) + τ(x − 1))σ (x)E−

}
.

Substituting the values for u(x, n), v(x, n) and H(x, n) we obtain

L−(x, n + 1)L+(x, n) =
[(

λn

n

τn(x)

τ ′
n

− λn

)(
λn

n

τn(x + 1)

τ ′
n+1

− σ(x + 1)

)

+
λn

n

τn(x + 1)

τ ′
n

(σ (x) + τ(x))

]
+ u(x + 1, n)H(x, n).

It can be proved that the expression in squared brackets is independent of x, say µ(n).
Applying the last equality to the orthonormal function φn(x) and taking into account (ND1),
(ND3) and (ND4) we obtain

µ(n) = λ2n

2n

λ2n+2

2n + 2
αnγn+1.

With the same technique we calculate

L+(x, n − 1)L−(x, n) =
[(

−λn

n

τn(x − 1)

τ ′
n

+
λ2n

2n
(x − 1 − βn) + λn

)

×
(

−λn

n

τn(x)

τ ′
n

+
λ2n

2n
(x − βn) + σ(x)

)
− (σ (x − 1) + τ(x − 1))

×
(

− λn

n

τn(x)

τ ′
n

+
λ2n

2n
(x − βn)

)]
+ u(x, n − 1)H(x, n).

As before the expression in squared brackets is independent of x, say ν(n). Applying
both sides of the last equality to the functions φn(x), and taking into account (ND1), (ND3)
and (ND4) we obtain

ν(n) = λ2n−2

2n − 2

λ2n

2n
αn−1γn.

Obviously ν(n + 1) = µ(n).
These constants are given explicitly in appendix B.
Finally the desired relations corresponding to the Spiridonov–Vinet–Zhedanov

factorization method are

L−(x, n + 1)L+(x, n) = µ(n) + u(x + 1, n)H(x, n) (ND5)

L+(x, n)L−(x, n + 1) = µ(n) + u(x, n − 1)H(x, n + 1). (ND6)
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Again, if we want L+(x, n) and L−(x, n) to be mutually adjoint, we have to divide both
expressions (ND5) and (ND6) by

λ2n

2n

λ2n+2

2n + 2
only in the case of Hahn and Chebyshev functions.

8. Some comments

The classical orthogonal polynomials we have presented in the preceding sections are solutions
of the second-order differential equation

σ(s)y ′′
n(s) + τ(s)y ′

n(s) + λnyn(s) = 0

in the continuous case, or second-order difference equation

σ(x)"∇yn(x) + τ(x)"yn(x) + λnyn(x) = 0

in the discrete case for uniform lattices where σ(x) and τ(x) are polynomials of at most the
second and first degree respectively.

Atakishiev and collaborators have generalized the classical orthogonal polynomials using
a characterization based on the difference equation of hypergeometric type that covers all the
cases defined by Andrews and Askey [16]. This characterization covers the q-analogue of
classical orthogonal polynomials on non-uniform lattices.

Our paper should be implemented with the construction of raising and lowering operators
for the orthogonal polynomials on non-uniform lattices, in particular the q-analogue of the
classical orthogonal polynomials. For this purpose we have at our disposal the analogue
of difference equations, Rodrigues formula and recurrence relations for the orthogonal
polynomials on non-uniform lattice, given explicitly by Nikiforov et al [4].

Another approach to the same problem is given by Smirnov, via the factorization
method suggested by Schrödinger for the solution of a second-order differential equation
of hypergeometric type. Smirnov has applied this method to the finite-difference equation
on uniform lattices [9] and on non-uniform lattices [17, 18]. In his approach the raising and
lowering operators are defined with respect to two indices: the first one, the degree of the
orthogonal polynomials, the second one the order of the finite derivative with respect to the
discrete variable. For this reason his raising and lowering operators are not equal to ours.

As a final comment to appendices A and B, we note that in an unpublished report of
Koekoek and Swarttouw [20] presents tables for orthogonal polynomials of the Askey scheme
and its q-analogue, including the raising and lowering operators of classical orthogonal
polynomials of hypergeometric type. There are two points by which our appendices are
different from theirs. First, we have calculated the raising and lowering operators from the
Rodrigues formula (see (1.2.13) and (2.2.10) of [4]), but their raising and lowering operators
are connected with some recurrence relations (see (1.4.5) and (2.4.13)–(2.4.17) of [4]) which
are defined with respect to two indices. Besides this, their appendices do not cover the
differential/difference equations, recurrence relations and raising/lowering operators with
respect to the orthonormal functions of hypergeometric type as given in our appendices.
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Appendix A. Orthogonal polynomials of continuous variable

A.1. Hermite polynomials

H ′′
n (s) − 2sH ′

n(s) + 2nHn(s) = 0 (He1)

sHn(s) = 1
2Hn+1(s) + nHn−1(s) (He2)

Hn+1(s) = 2sHn(s) − H ′
n(s) (He3)

Hn−1(s) = 1

2n
H ′

n(s). (He4)

A.2. Laguerre polynomials

sLα′′
n (s) + (1 + α − s)Lα′

n (s) + nLα
n(s) = 0 (La1)

(n + 1)Lα
n+1(s) + (n + α)Lα

n−1(s) + (s − 2n − α − 1)Lα
n(s) = 0 (La2)

(n + 1)Lα
n+1(s) = (s − n − α − 1)Lα

n(s) + sLα′
n (s) (La3)

(n + α)Lα
n−1(s) = nLα

n(s) − sLα′
n (s). (La4)

A.3. Legendre polynomials

(1 − s2)P ′′
n (s) − 2sP ′

n(s) + n(n + 1)Pn(s) = 0 (Le1)
n + 1

2n + 1
Pn+1(s) +

n

2n + 1
Pn−1(s) − sPn(s) = 0 (Le2)

(n + 1)Pn+1(s) = (n + 1)sPn(s) − (1 − s2)P ′
n(s) (Le3)

nPn−1(s) = nsPn(s) + (1 − s2)P ′
n(s). (Le4)

A.4. Jacobi polynomials

(1 − s2)P (α,β)′′
n (s) + [β − α − (α + β + 2)s]P (α,β)′

n (s) + n(n + α + β + 1)P (α,β)
n (s) = 0 (J1)

2(n + 1)(n + α + β + 1)

(2n + α + β + 1)(2n + α + β + 2)
P

(α,β)

n+1 (s) +
2(n + α)(n + β)

(2n + α + β)(2n + α + β + 1)
P

(α,β)

n−1 (s)

+

[
β2 − α2

(2n + α + β)(2n + α + β + 2)
− s

]
P (α,β)
n (s) = 0 (J2)

2(n + 1)(n + α + β + 1)

(2n + α + β + 2)
P

(α,β)

n+1 (s)

=
[
(n + α + β + 1)

(2n + α + β + 2)
(α − β) + (n + α + β + 1)s

]
P (α,β)
n (s) − (1 − s2)P (α,β)′

n (s)

(J3)
2(n + α)(n + β)

(2n + α + β)
P

(α,β)

n−1 (s) =
[
(n + α + β + 1)

(2n + α + β + 2)
(β − α) − (n + α + β + 1)s

+(2n + α + β + 1)

(
s − β2 − α2

(2n + α + β)(2n + α + β + 2)

)]
P (α,β)′
n (s)

+(1 − s2)P (α,β)
n (s). (J4)
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A.5. Normalized Hermite functions

ψn(s) = (2nn!
√
π)−1/2e−s2/2Hn(s)

ψ ′′
n (s) + (1 − s2)ψn(s) + 2nψn(s) = 0 (NHe1)√
2(n + 1)ψn+1(s) +

√
2nψn−1(s) − 2sψn(s) = 0 (NHe2)

L+(s, n)ψn(s) = sψn(s) − ψ ′
n(s) =

√
2(n + 1)ψn+1(s) (NHe3)

L−(s, n)ψn(s) = sψn(s) + ψ ′
n(s) =

√
2nψn−1(s) (NHe4)

ψ0(s) = π−1/4e−s2/2

ψn(s) = 1√
2nn!

(
s − d

ds

)n

ψ0(s)

L+(s, n)L−(s, n) = 2nψn(s)

L−(s, n)L+(s, n)ψn(s) = 2(n + 1)ψn(s).

A.6. Normalized Laguerre functions

ψn(s) =
√

n!

,(n + α + 1)
e−s/2sα/2Lα

n(s)

sψ ′′
n (s) + ψ ′

n(s) − 1

4

(
s +

α2

s
− 2α − 2

)
ψn(s) + nψn(s) = 0 (NLa1)√

(n + 1)(n + α + 1)ψn+1(s) +
√
n(n + α)ψn−1(s) − (2n + α + 1 − s)ψn(s) = 0 (NLa2)

L+(s, n)ψn(s) = − 1
2 (2n + α + 2 − s)ψn(s) − sψ ′

n(s) = −
√
(n + 1)(n + α + 1)ψn+1(s)

(NLa3)

L−(s, n)ψn(s) = − 1
2 (2n + α − s)ψn(s) + sψ ′

n(s) = −
√
n(n + α)ψn−1(s) (NLa4)

ψ0(s) =
√

1

,(α + 1)
e−s/2sα/2

ψn(s) = 1√
n!(α + 1)n

n−1∏
k=0

L+(s, n − 1 − k)ψ0(s)

L+(s, n − 1)L−(s, n)ψn(s) = n(n + α)ψn(s)

L−(s, n + 1)L+(s, n)ψn(s) = (n + 1)(n + α + 1)ψn(s).

A.7. Normalized Legendre functions

ψn(s) =
√

2n + 1

2
Pn(s)

(1 − s2)ψ ′′
n (s) − 2sψ ′

n(s) + n(n + 1)ψn(s) = 0 (NLe1)

(n + 1)

√
2n + 1

2n + 3
ψn+1(s) + n

√
2n + 1

2n − 1
ψn−1(s) − (2n + 1)sψn(s) = 0 (NLe2)

L+(s, n)ψn(s) = (n + 1)sψn(s) − (1 − s2)ψ ′
n(s) = (n + 1)

√
2n + 1

2n + 3
ψn+1(s) (NLe3)

L−(s, n)ψn(s) = nsψn(s) + (1 − s2)ψ ′
n(s) = n

√
2n + 1

2n − 1
ψn−1(s) (NLe4)
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ψ0(s) = 1√
2

ψn(s) = 1

n!

√
2n + 1

n−1∏
k=0

L+(s, n − 1 − k)ψ0(s)

L+(s, n − 1)L−(s, n) = n2

L−(s, n + 1)L+(s, n) = (n + 1)2.

A.8. Normalized Jacobi functions

ψn(s) =
√

n!(2n + α + β + 1)(n + α + β + 1)

2α+β+1,(n + α + 1),(n + β + 1)
(1 − s)

α
2 (1 + s)

β

2 P (α,β)
n (s)

(1 − s2)ψ ′′
n (s) − 2sψ ′

n(s) − 1

4

{
(β − α − (α + β)s)2

1 − s2
− 2(α + β)s

}
ψn(s)

+n(n + α + β + 1)ψn(s) = 0 (NJ1)

2
√
(n + 1)(n + α + 1)(n + β + 1)(n + α + β + 1)(2n + α + β + 1)

(2n + α + β + 2)
√

2n + α + β + 3
ψn+1(s)

+
2
√
n(n + α)(n + β)(n + α + β)(2n + α + β + 1)

(2n + α + β + 2)
√

2n + α + β − 1
ψn−1(s)

+(2n + α + β + 1)

{
β2 − α2

(2n + α + β)(2n + α + β + 2)
− s

}
ψn(s) = 0 (NJ2)

L+(s, n)ψn(s) =
{
(n + α + β + 1)s − n + α + β + 1

2n + α + β + 2
(β − α − n2)

+ 1
2 (β − α − (α + β)s)

}
ψn(s) − (1 − s2)ψ ′

n(s)

= 2
√
(n + 1)(n + α + 1)(n + β + 1)(n + α + β + 1)(2n + α + β + 1)

(2n + α + β + 2)
√

2n + α + β + 3
ψn+1(s)

(NJ3)

L−(s, n)ψn(s) =
{

− (n + α + β + 1)s +
n + α + β + 1

2n + α + β + 2
(β − α − n2)

+(2n + α + β + 1)

(
s − β2 − α2

(2n + α + β)(2n + α + β + 2)

)

− 1
2 (β − α − (α + β)s)

}
ψn(s) + (1 − s2)ψ ′

n(s)

= 2
√
n(n + α)(n + β)(n + α + β)(2n + α + β + 1)

(2n + α + β)
√

2n + α + β − 1
ψn−1(s) (NJ4)

ψ0(s) = α + β + 1√
2α+β+1,(α + 1),(β + 1)

(1 − s)
α
2 (1 + s)

β

2

ψn(s) =
n−1∏
k=0

{
(2k + α + β + 2)

2
√
(k + 1)(k + α + 1)(k + β + 1)

×
√

2k + α + β + 3√
(k + α + β + 1)(2k + α + β + 1)

L+(s, n − 1 − k)

}
ψ0(s)
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L+(s, n − 1)L−(s, n)ψn(s) = 4n(n + α)(n + β)(n + α + β)

(2n + α + β)2
ψn(s)

L−(s, n + 1)L+(s, n)ψn(s) = 4(n + 1)(n + α + 1)(n + β + 1)(n + α + β + 1)

(2n + α + β + 2)2
ψn(s).

Appendix B. Orthogonal polynomials of a discrete variable

B.1. Kravchuk polynomials

p(N − x)

q
kn(x + 1) + xkn(x − 1) +

x(p − q) − Np

q
kn(x) +

n

q
kn(x) = 0 (K1)

n + 1

q
kn+1(x) + p(N − n + 1)kn−1(x) + [n + p(N − 2n) − x]kn(x) = 0 (K2)

n + 1

q
kn+1(x) = p

q
(x + n − N)kn(x) + xkn(x − 1) (K3)

p(N − n + 1) = p

q
(x + n − N)kn(x) +

p

q
(N − x)kn(x + 1). (K4)

B.2. Meixner polynomials

µ(x + γ )mn(x + 1) + xmn(x − 1) − [µ(x + γ ) + x]mn(x) + n(1 − µ)mn(x) = 0 (M1)

µmn+1(x) − n(n + γ − 1)mn+1(x) + [µ(x + n + γ ) + n − x]mn(x) = 0 (M2)

−µmn+1(x) = −µ(x + n + γ )mn(x) + xmn(x − 1) (M3)

−n(n + γ − 1)mn−1(x) = −µ(x + n + γ )mn(x) + µ(x + γ )mn(x + 1). (M4)

B.3. Charlier polynomials

µcn(x + 1) + xcn(x − 1) − (x + µ)cn(x) + ncn(x) = 0 (C1)

−µcn+1(x) − ncn−1(x) + (n + µ − x)cn(x) = 0 (C2)

−µcn+1(x) = −µcn(x) + xcn(x − 1) (C3)

−ncn−1(x) = −µcn(x) + µcn(x + 1). (C4)

B.4. Chebyshev polynomials

(x + 1)(N − x − 1)tn(x + 1) + x(N − x)tn(x − 1)

−[(N − x − 1)(x + 1) + x(N − x)]tn(x) + n(n + 1)tn(x) = 0 (T1)
1
2 (n + 1)tn+1(x) + 1

2n(N
2 − n2)tn−1(x) + 1

2 (2n + 1)(N − 1 − 2x)tn(x) = 0 (T2)
1
2 (n + 1)tn+1(x) = −[ 1

2 (n + 1)(N − 2x − n − 1) + x(N − x)]tn(x) + x(N − x)tn(x − 1)

(T3)
1

2
n(N2 − n2)tn−1(x) =

[
1

2
(n + 1)(N − 2x − n − 1) + n(n + 1) + (2n + 1)

(
x − N − 1

2

)

−(x + 1)(N − x − 1)

]
tn(x) + (x + 1)(N − x − 1)tn(x + 1). (T4)
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B.5. Hahn polynomials

[x(N − x − β − 2) + (β + 1)(N − 1)]hα,β
n (x + 1) + x(N + α − x)hα,β

n (x − 1)

−[x(2N − 2x + α − β − 2) + (β + 1)(N − 1)]hα,β
n (x)

+n(n + α + β + 1)hα,β
n (x) = 0 (Ha1)

(n + 1)(n + α + β + 1)

2n + α + β + 2
h
α,β

n+1(x)

+
(n + α)(n + β)(N + n + α + β)(N − n)

2n + α + β
h
α,β

n−1 + (2n + α + β + 1)

×
[
α − β + 2N − 2

4
+

(
β2 − α2

)
(2N + α + β)

4(2n + α + β)(2n + α + β + 2)
− x

]
hα,β
n (x) = 0

(Ha2)
(n + 1)(n + α + β + 1)

2n + α + β + 2
h
α,β

n+1(x) = x(N + α − x)hα,β
n (x − 1)

−
{
(n + α + β + 1)

2n + α + β + 2

[
(β + 1)(N − 1)−(α + β + 2 + 2n)x + (N − n − β−2)n

]

+x(N + α − x)

}
hα,β
n (x) (Ha3)

(n + α)(n + β)(N + n + α + β)(N − n)

2n + α + β
h
α,β

n−1(x)

= [x(N − x − β − 2) + (β + 1)(N − 1)]hα,β
n (x + 1)

+

[
n + α + β + 1

2n + α + β + 2
((β + 1)(N − 1) − (α + β + 2 + 2n)x

+(N − n − β − 2)n) + n(n + α + β + 1) + (2n + α + β + 1)

×
(
x − α − β + 2N − 2

4
− (β2 − α2)(2N + α + β)

4(2n + α + β)(2n + α + β + 2)

)

−x(N − x − β − 2) + (β + 1)(N − 1)

]
hα,β
n (x). (Ha4)

B.6. Normalized Kravchuk functions

ψn(x) =
√

n!(N − n)!

(pq)n

√
pxqN−x

x!(N − x)!
kn(x)

√
p

q
(N − x)(x + 1)ψn(x + 1) +

√
p

q
(N − x + 1)xψn(x − 1)

+
x(p − q) − Np

q
ψn(x) +

n

q
ψn(x) = 0 (NK1)

√
p

q
(N − n)(n + 1)ψn+1(x) +

√
p

q
(N − n + 1)nψn−1(x)

+
1

q
[n + p(N − 2n) − x]ψn(x) = 0 (NK2)
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L+(x, n)ψn(x) = p

q
(x + n − N)ψn(x) +

√
p

q
(N − x + 1)xψn(x − 1)

=
√

p

q
(N − n)(n + 1)ψn+1(x) (NK3)

L−(x, n)ψn(x) = p

q
(x + n − N)ψn(x) +

√
p

q
(N − x)(x + 1)ψn(x + 1)

=
√

p

q
(N − n + 1)nψn−1(x) (NK4)

ψ0(x) =
√

N !pxqN−x

x!(N − x)!

ψn(x) =
√

qn(N − n)!

pnN !n!

n−1∏
k=0

L+(x, n − 1 − k)ψ0(x)

L+(x, n − 1)L−(x, n)ψn(x) = p

q
(N − n + 1)nψn(x)

L−(x, n + 1)L+(x, n)ψn(x) = p

q
(N − n)(n + 1)ψn(x).

B.7. Normalized Meixner functions

ψn(x) =
√

µn(1 − µ)γ

n!(γ )n

√
µx,(x + γ )

,(x + 1),(γ )
mγ

n (x)

√
µ(x + γ )(x + 1)ψn(x + 1) +

√
µx(x + γ − 1)ψn(x − 1)

−[µ(x + γ ) + x]ψn(x) + n(1 − µ)ψn(x) = 0 (NM1)

−
√
µ(n + γ )(n + 1)ψn+1(x) −

√
µn(n + γ − 1)ψn−1(x)

+[µ(x + n + γ ) + n − x]ψn(x) = 0 (NM2)

L+(x, n)ψn(x) = −[µ(x + n + γ )]ψn(x) +
√
µx(x + γ − 1)ψn(x − 1)

= −
√
µ(n + γ )(n + 1)ψn+1(x) (NM3)

L−(x, n)ψn(x) = −[µ(x + n + γ )]ψn(x) +
√
µ(x + 1)(x + γ )ψn(x + 1)

= −
√
µ(n + γ − 1)nψn−1(x) (NM4)

ψ0(x) =
√
(1 − µ)γ

√
µx,(x + γ )

,(x + 1),(γ )

ψn(x) = (−1)n√
µn(γ )nn!

n−1∏
k=0

L+(x, n − 1 − k)ψ0(x)

L+(x, n − 1)L−(x, n)ψn(x) = µ(n + γ − 1)nψn(x)

L−(x, n + 1)L+(x, n)ψn(x) = µ(n + γ )(n + 1)ψn(x).
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B.8. Normalized Charlier functions

ψn(x) =
√

µn

n!

√
e−µµx

x!
c(µ)n (x)

√
µ(x + 1)ψn(x + 1) +

√
µxψn(x − 1) − (x + µ)ψn(x) + nψn(x) = 0 (NC1)

−
√
µ(n + 1)ψn+1(x) − √

µnψn−1(x) + (n + µ − x)ψn(x) = 0 (NC2)

L+(x, n)ψn(x) = −µψn(x) +
√
µxψn(x − 1) = −

√
µ(n + 1)ψn+1(x) (NC3)

L−(x, n)ψn(x) = −µψn(x) +
√
µ(x + 1)ψn(x + 1) = −√

µnψn−1(x) (NC4)

ψ0(x) =
√

e−µµx

x!

ψn(x) = (−1)n√
µnn!

n−1∏
k=0

L+(x, n − 1 − k)ψ0(x)

L+(x, n − 1)L−(x, n)ψn(x) = µnψn(x)

L−(x, n + 1)L+(x, n)ψn(x) = µ(n + 1)ψn(x).

B.9. Normalized Chebyshev functions

ψn(x) =
√

(2n + 1)(N − n − 1)

(N + n)!
tn(x)

(x + 1)(N − x − 1) + ψn(x + 1) + x(N − x)ψn(x − 1)

−[(x + 1)(N − x − 1) + x(N − x)]ψn(x) + n(n + 1)ψn(x) = 0 (NT1)

n + 1

2

√
(2n + 1)(N2 − n2 − 2n − 1)

2n + 3
ψn+1(x) +

n

2

√
(2n + 1)(N2 − n2)

2n − 1
ψn−1(x)

+(2n + 1)

(
N − 1

2
− x

)
ψn(x) = 0 (NT2)

L+(x, n)ψn(x) = −[ 1
2 (n + 1)(N − 2x − n − 1) + x(N − x)]ψn(x)

+x(N − x)ψn(x − 1) = n + 1

2

√
(2n + 1)(N2 − n2 − 2n − 1)

2n + 3
ψn+1(x) (NT3)

L−(x, n)ψn(x) =
[

1
2 (n + 1)(N − 2x − n − 1) + n(n + 1)

+(2n + 1)

(
x − N − 1

2

)
− (x + 1)(N − x − 1)

]
ψn(x)

+(x + 1)(N − x − 1)ψn(x + 1) = n

2

√
(2n + 1)(N2 − n2)

2n − 1
ψn−1(x) (NT4)

ψ0(x) = 1√
N

ψn(x) =
n−1∏
k=0

{
2

k + 1

√
2k + 3

(2k + 1)(N2 − k2 − 2k − 1)
L+(x, n − 1 − k)

}
ψ0(x)

L+(x, n − 1)L−(x, n)ψn(x) = n2

4
(N + n)(N − n)ψn(x)
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L−(x, n + 1)L+(x, n)ψn(x) = (n + 1)2

4
(N + n + 1)(N − n − 1)ψn(x).

B.10. Normalized Hahn functions

ψn(x) =
√

(2n + α + β + 1)n!(N − n − 1)!,(n + α + β + 1)

,(n + α + 1),(n + β + 1),(N + n + α + β + 1)

×
√

,(N + α − x),(x + β + 1)

,(N − x),(x + 1)
h(α,β)
n (x)

√
(N − x − 1)(x + β + 1)(N + α − x − 1)(x + 1)ψn(x + 1)

+
√
(N − x)(x + β)(N + α − x)xψn(x − 1) − {N − x − 1)(x + β + 1)

+x(N + α − x)}ψn(x) + n(n + α + β + 1)ψn(x) = 0 (NHa1)
√
(n + 1)(n + α + 1)(n + β + 1)(n + α + β + 1)(2n + α + β + 1)

(2n + α + β + 2)

×
√

(N + n + α + β + 1)(N − n − 1)

2n + α + β + 3
· ψn+1(x)

+

√
n(n + α)(n + β)(n + α + β)(2n + α + β + 1)(N + n + α + β)(N − n)

(2n + α + β)
√

2n + α + β − 1

×ψn−1(x) + (2n + α + β + 1)

{
2N + α − β − 2

4

+
(β2 − α2)(2N + α + β)

4(2n + α + β)(2n + α + β + 2)
− x

}
ψn(x) = 0 (NHa2)

L+(x, n)ψn(x) =
√
x(N + α − x)(β + x)(N − x)ψn(x − 1) −

[
n + α + β + 1

2n + α + β + 2
×{(β + 1)(N − 1) − (α + β + 2 + 2n)x + (N − n − β − 2)n}
+x(N + α − x)

]
ψn(x) =

√
(n + 1)(n + α + 1)(n + β + 1)(n + α + β + 1)

(2n + α + β + 2)
√

2n + α + β + 3

×
√
(2n + α + β + 1)(N + n + α + β + 1)(N − n − 1) · ψn+1(x) (NHa3)

L−(x, n)ψn(x) =
√
(x + 1)(N + α − x − 1)(x + β + 1)(N − x − 1)ψn(x + 1)

+

[
n + α + β + 1

2n + α + β + 2
{(β + 1)(N − 1) − (α + β + 2 + 2n) x

+(N − n − β − 2)n} + n(n + α + β + 1) + (2n + α + β + 1)

×
(
x − 2N + α − β − 2

4
− (β2 − α2)(α + β + 2N)

4(2n + α + β)(2n + α + β + 2)

)

−(N − x − 1)(x + β + 1)

]
ψn(x) =

√
n(n + α)(n + β)(n + α + β)

(2n + α + β)
√

2n + α + β − 1

×
√
(2n + α + β + 1)(N + n + α + β)(N − n) · ψn−1(x) (NHa4)

ψ0(x) =
√

(α + β + 1)(N − 1)!,(α + β + 1)

,(α + 1),(β + 1),(N + α + β + 1)

√
,(N + α − x),(x + β + 1)

,(N − x),(x + 1)
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ψn(x) =
n−1∏
k=0

{
(2k + α + β + 2)√

(k + 1)(k + α + 1)(k + β + 1)(k + α + β + 1)

×
√

(2k + α + β + 3)

(2k + α + β + 1)(N + k + α + β + 1)(N − k − 1)
L+(x, n − 1 − k)

}
· ψ0

L+(x, n − 1)L−(x, n)ψn(x)

= n(n + α)(n + β)(n + α + β)(N + n + α + β)(N − n)

(2n + α + β)2
ψn(x)

L−(x, n + 1)L+(x, n)ψn(x) = (n + 1)(n + α + 1)(n + β + 1)

(2n + α + β + 2)2

×(n + α + β + 1)(N + n + α + β + 1)(N − n − 1)ψn(x).
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